Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Letters in Applied NanoBioScience ; 11(2):3573-3585, 2022.
Article in English | Scopus | ID: covidwho-2301600

ABSTRACT

Foot-and-mouth disease (FMD) and Coronavirus Disease 2019 (COVID-19) are transboundary diseases caused by single-stranded positive-sense RNA viruses with similarities in genome replication and viral protein synthesis. In FMD, asymptomatic infection leads to carrier status and persistently infected animals that threaten the animals vaccinated with a trivalent inactivated whole virus vaccine. Similar information on COVID-19 is not yet available. As COVID-19 vaccination is introduced in January 2021 (since 16 January 2021 in India), its outcome can be assessed by the year-end;and while doing so, the experiences gained in the control of FMD in livestock worldwide can be applied, including monitoring of vaccination response, duration of immunity, level of herd immunity developed, and antigenic matching of the vaccine virus. Antigenic divergence of the virus is a major issue in FMD, and different geographical regions in the world use different virus strains in vaccine preparations to antigenically match circulating virus strains in respective regions for control of the disease. Non-synonymous mutations in the critical antigenic determinants of SARS-CoV-2 have been observed, and there is likely the existence/development of antigenic variants. Therefore, during the post-COVID-19 vaccination regime, it will be essential to monitor the suitability of the in-use vaccine strain region-wise from time to time, as there could be an eruption of isolated outbreaks in a country arising due to antigenic variation and variants. In the context of the present scenario of COVID-19 around the Globe and multiple ongoing efforts to develop suitable vaccine(s) to control the disease, it is a must to develop NSP-antibody (that differentiate infected from vaccinated) assays to differentiate infected from vaccinated individuals(DIVI;DIVA in veterinary epidemiology). The techniques used and experiences gained in ongoing FMD control programs in the endemic countries can be applied to COVID-19 control in a country;and finally, the Globe. After achieving the control of COVID-19, the aim would be to eradicate the virus, which will be tough even with vaccination, as the disease/infection may become endemic during the time to come. To achieve this, applying the principles of Progressive Control Pathway for Foot-and-Mouth Disease (PCP-FMD;FAO/OIE) to COVID-19 control will be beneficial in its control. The present review discusses the issue of control of COVID-19. © 2021 by the authors.

2.
Journal of Experimental Biology and Agricultural Sciences ; 9(2):117-130, 2021.
Article in English | Scopus | ID: covidwho-1404143

ABSTRACT

Coronaviruses (CoVs), classified into four genera, viz., alpha-, beta-, gamma-, and Delta-CoV, represent an important group of diverse transboundary pathogens that can infect a variety of mammalian and avian species including humans, animals, poultry, and non-poultry birds. CoVs primarily infect lung and gut epithelial cells, besides monocytes and macrophages. CoVs have high mutation rates causing changes in host specificity, tissue tropism, and mode of virus excretion and transmissions. The recent CoV zoonoses are SARS, MERS, and COVID-19 that are caused by the transmission of beta-CoVs of bats to humans. Recently, reverse zoonoses of the COVID-19 virus have been detected in dogs, tigers, and minks. Beta-CoV strains also infect bovine (BCoV) and canine species (CRCoV);both these beta-CoVs might have originated from a common ancestor. Despite the high genetic similarity between BCoV, CRCoV, and HCoV-OC43, these differ in species specificity. Alpha-CoV strains infect canine (CCoV), feline (FIPV), swine (TGEV and PEDV), and humans (HCoV229E and NL63). Six coronavirus species are known to infect and cause disease in pigs, seven in human beings, and two in dogs. The high mutation rate in CoVs is attributed to error-prone 3′-5′ exoribonuclease (NSP 14), and genetic recombination to template shift by the polymerase. The present compilation describes the important features of the CoVs and diseases caused in humans, animals, and birds that are essential in surveillance of diverse pool of CoVs circulating in nature, and monitoring interspecies transmission, zoonoses, and reverse zoonoses. © 2021, Editorial board of Journal of Experimental Biology and Agricultural Sciences. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL